Bonsoir je bloque pour le petit c et la question 2, quelqu’un pourrait m’aider s’il vous plaît ? On considère le programme de calcul suivant : • Choisir un nomb
Question
On considère le programme de calcul suivant :
• Choisir un nombre de départ
• Ajouter 1
• Calculer le carré du résultat obtenu
• Lui soustraire le carré du nombre de départ
• Ecrire le résultat final
1) a) Vérifier que lorsque le nombre de départ est 1, on obtient 3 au résultat final.
b) Lorsque le nombre de départ est 2, quel résultat final obtient-on ?
c) Le nombre de départ étant x, exprimer le résultat final en fonction de x.
2) On considère l'expression
P = (x + 1)2 - x2
Développer puis réduire l'expression P.
3) Quel nombre de départ doit-on choisir pour obtenir un résultat final égal à 15?
2 Réponse
-
1. Réponse Vins
bonsoir
question 2 donc
P = ( x + 1 )² - x²
P = x² + 2 x + 1 - x²
P = 2 x + 1
2 x + 1 = 15
2 x = 14
x = 7
-
2. Réponse PhoenixDeGlace
Bonjour !
1a. Prenons le nombre 1.
➤ 1
➤ 1 + 1 = 2
➤ 2² = 4
➤ 4 - 1² = 4 - 1 = 3
➤ 3
1b.
➤ 2
➤ 2 + 1 = 3
➤ 3² = 9
➤ 9 - 2² = 9 - 4 = 5
➤ 5
Nous obtenons donc 5 en choisissant 2 comme nombre de départ.
1c.
➤
➤ + 1
➤ ( + 1)²
➤ ( + 1)² - ²
➤ ( + 1)² - ²
2.
P = ( + 1)² - ²
= ( + 1) * ( + 1) - ²
= * + * 1 + 1 * + 1 * 1
= 2 + + + 2
= 4 + 2
3. Pour obtenir le résultat final égal à 15, il trouver le nombre qui, multiplié par 4 et ajouté à 2, donne 15. On a donc 15 = 4 + 2. Il faut trouver l'inconnue .
15 = 4 + 2
15 - 2 = 4
13 = 4
= 13/4
= 3.25
Il faudra donc choisir 3.25 pour obtenir un résultat final égal à 15.
Voilàà, j'espère que ça t'a aidé!
Bonne soirée ! ✩