Mathématiques

Question

Bonjour, j’ai cet exercice dans mon dm sur le paradoxe de Zénon d’élée. Il concerne les suites et les limites. Merci en avance pour votre aide.
Bonjour, j’ai cet exercice dans mon dm sur le paradoxe de Zénon d’élée. Il concerne les suites et les limites. Merci en avance pour votre aide.

1 Réponse

  • Bonjour :))

    • Question 1

    [tex](U_n)\ d\'efinie\ sur\ \mathbb N\ par:\ U_n=\frac{1}{2^{n}}\\\\\frac{U_{n+1}}{U_n}=\frac{\frac{1}{2^{n+1}}}{\frac{1}{2^{n}}}=\frac{2^{n}}{2{n+1}}=\frac{2^{n}}{2*2^{n}}=\frac{1}{2}\\\\(U_n)\ est\ une\ suite\ g\'eom\'etrique\ de\ raison\ q=\frac{1}{2}\ et\ de\ premier\ terme\\U_0=\frac{1}{2^{0}}=1\\\\Donc\ U_n=1*(\frac{1}{2})^{n}[/tex]

    • Question 2, a)

    [tex]Pour\ une\ suite\ g\'eom\'etrique\ on\ a:\\1+q+q^{2}+...+q^{n}=\frac{1-q^{n+1}}{1-q}\\\\Ici,\ on\ a:1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{n-1}} = 1 + q + q^{2}+q^{n-1}\\\Leftrightarrow \frac{1-q^{n}}{1-q}[/tex]

    • Question 2, b)

    [tex]S_n=50*(1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}})\\\\\boxed{S_n=50*\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}}[/tex]

    • Question 3

    [tex]RAPPEL:\lim_{n \to \infty} q^{n}=0\ \ \ si\ 0<q<1\\\\ \lim_{n \to \infty} S_n=50*\frac{1-0}{1-\frac{1}{2}}=50*2=100[/tex]

    • Question 4

    [tex]La\ limite\ d'une\ suite\ finie\ pr\'ecise\ que\ la\ suite\ se\ rapproche\ de\ la\ valeur\\ finie\ quand\ n\ devient\ de\ plus\ en\ plus\ grand\ sans\ jamais\ atteindre\\cette\ valeur\ finie.\\\\On\ v\'erifie\ donc\ le\ paradoxe\ de\ Zenon\ El\'ee.[/tex]